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The two-phase flow in settling vessels with walls that are inclined to the vertical is 
investigated. By neglecting inertial effects and the viscosity of the suspension i t  is 
shown that the particle concentration remains constant on kinematic-wave fronts. The 
wave fronts are horizontal and propagate in a quasi-one-dimensional manner, but 
are imbedded in a two-dimensional or three-dimensional basic flow which, in turn, 
depends on the waves via the boundary conditions. Concentration discontinuities 
(interfaces) are described by kinematic-shock theory. The kinematic shocks are shown 
to be horizontal, with the possible exception of discontinuities that separate the 
suspension from the sediment. 

At downward-facing inclined walls conservation of mass enforces the existence of a 
boundary-layer flow with relatively large velocity. As G/R2+ co and G/R4-+ 0, where 
G and R are respectively a sedimentation Grashof number and a sedimentation 
Reynolds number, the entrainment of suspended particles into the boundary-layer 
flow of clear liquid is negligibly small. This provides an appropriate boundary condi- 
tion for the basic flow of the suspension. Thus, in the double limit considered, a kine- 
matic theory suffices to determine the convective flow of the suspension due to the 
presence of inclined walls. 

As an example batch sedimentation in vessels with inclined plane or conical walls is 
investigated. The settling process is terminated after a time that can be considerably 
smaller than the time required in a vertical vessel under the same conditions.Depending 
on the initial particle concentration, there are centred kinematic waves that are linked 
to a continuous increase of the particle concentration in the suspension. 

In  an appendix, the flow in the boundary layer a t  a downward facing, inclined wall 
is investigated. With G/R2+co and G/R4-+0  the boundary layer consists of an 
inviscid particle-free main part, a viscous sublayer a t  the wall, and a free shear 
sublayer a t  the liquid/particle interface. 

1. Introduction 
Kinematic waves are governed by continuity equations supplemented by functional 

relations between the fluxes and concentrations of the quantities under consideration 
(Whitham 1974). The theory of one-dimensional kinematic waves has been very 
successful in describing, among other things, the settling of particles in liquid-filled 
vertical vessels of constant cross-section (Wallis 1969, p. 190; Kluwick 1977). More 
recently, the theory of one-dimensional kinematic waves has been extended to deal 
with non-constant cross-section also (Baron & Wajc 1979; Anestis 1981). 
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Generalizations to more than one space co-ordinate are SO far lacking. This may be 
partly because of the fact that in one-phase flow the generalization seems to be trivial, 
and the results not very interesting (Hayes 1974, p. 19). In  two-phase flow, however, 
there are two coupled continuity equations to be satisfied, and further difficulties 
arise from the boundary conditions a t  inclined walls. 

It has been known for about 60 years (Boycott 1920) that in the presence of inclined 
walls sedimentation rates can be several times larger than in vessels with vertical walls. 
Several models have already been proposed in order to provide a quantitative 
description of the phenomenon. The earlier models, which are reviewed by Hill, 
Rothfus & Li (1977) and Acrivos & Herbolzheimer (1979), were based on observations 
and did not rationally proceed from the basic equations of fluid mechanics. More 
recently, Hill et al. (1977) obtained numerical solutions of the two-phase flow 
equations for a very dilute suspension of particles that settle with a predetermined 
velocity relative to the fluid. Acrivos & Herbolzheimer (1979) developed an asymptotic 
theory in terms of a sedimentation Grashof number G and a sedimentation Reynolds 
number R, with G/R+ co and G / R 4 +  co. They indicated that the sedimentation rate 
can be predicted by the well-known Ponder-Nakamura-Kuroda formula (Ponder 
1925; Nakamura & Kuroda 1937), and provided very interesting details of the flow 
field. The case G/R+ 00, G/R4 = O( 1) was also briefly discussed by Acrivos & Herbolz- 
heimer (1979), but no solutions were given. 

The present paper is concerned with the limit G/R2+co while G/R4+0. The 
analysis is based on the continuity equations for the particulate phase and the 
incompressible mixture, respectively, supplemented by a drift-flux relation describing 
the relative motion of the particles and the liquid in terms of the particle concentration. 
As the inertial terms are neglected in the bulk flow, the particle concentration is 
constant in planes perpendicular to the body force, i.e. in horizontal planes. It follows 
that there are horizontal kinematic-wave fronts (including one of two types of kine- 
matic shocks) whose vertical motion depends on the two-dimensional or three- 
dimensional total volume flux. However, it is not concluded that the particle concen- 
tration is constant in the whole suspension. Thus, in contrast to that  of Acrivos & 
Herbolzheimer (1979), the present theory also predicts sedimentation processes with 
centred waves which emerge from the bottom if the initial concentration is such that a 
simple concentration jump from the suspension to the sediment is not possible (i.e. 

“a < “0 < “ t ,  

cf. figure 3). Although the theory ignores interparticle forces that could be important 
in the high-concentration region near the bottom, centred waves have been observed 
in the one-dimensional flow in vessels with vertical walls, and good agreement has 
been found between the experimental results and the predictions according to 
kinematic-wave theory (Shannon et ul. 1964; Shannon & Tory 1965). 

At inclined, downward-facing walls the ordinary boundary conditions (tangential 
flow of both the liquid and the particulate phase) cannot be satisfied. This leads to a 
boundary layer in which the velocity is much larger than in the suspension. It turns 
out that the flow in the bulk of the suspension can be determined without any know- 
ledge of the details of the flow in the boundary layer. The boundary layer, on the 
other hand, can be subdivided into an inviscid main part, a viscous sublayer a t  the 
wall, and a free shear layer a t  the interface between the clear liquid and the suspension. 
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The bulk flow’s independence from the boundary-layer flow and the mainly inviscid 
boundary layer give rise to a flow field that is remarkably different from the limiting 
case G/R4-+co  as investigated by Acrivos & Herbolzheimer (1979). 

2. Differential equations 
Consider the unsteady flow of an incompressible mixture of a fluid (subscript 1) and 

solid particles of uniform shape and size (subscript 2). The volume fraction of particles 
(concentration) is a,  and the vectors of volume flux densities of fluid and particles are 
respectively j, and j,. The following analysis is concerned with the bulk suspension 
away from the boundary layers at  inclined walls. (The flow in the boundary layer is 
considered in the appendix. The flow in the clear liquid on top of the suspension is not 
considered, as under the present assumptions it does not effect the flow in the bulk 
suspension.) We anticipate that the volume-flux density (and velocity) of the liquid 
phase in the suspension is of the same order of magnitude as the terminal settling 
velocity U ofa  single particle in the fluid a t  rest. This can be seen from the boundary 
condition a t  inclined walls (cf. §4), and is a result of the fact that the entrainment 
velocity into the boundary layers is of order U (cf. appendix). Hence we introduce 
dimensionless variables by referring all volume flux densities and velocities to U ,  all 
lengths (including the spatial co-ordinates) to a characteristic length H of the flow 
field, e.g. the height of the vessel, and the time t to  H / U .  

With the total volume flux density j = j,+ j,, the equations of continuity for the 
solid phase and the mixture are respectively 

aa 
- + V . j ,  = 0, 
at 

0.j = 0. (2) 

The pressure p is referred to the hydrostatic pressure in the pure liquid (density pl )  by 
defining a dimensionless pressure P according to 

where g is the constant body force per unit mass (gravitational acceleration) and g its 
absolute value. 

Following the basic ideas of the one-dimensional theory of kinematic waves in 
two-phase systems (Wallis 1969, pp. 91 and 133) we are going to assume that the effects 
of inertia and viscosity are small. If pz( > p,) is the density of the particle material and 
v1 is the kinematic viscosity of the liquid, which is assumed to be of the same order of 
magnitude as the kinematic viscosity of the suspension with the initial concentration 
a,, the buoyancy force, inertial forces and viscous forces are of the order of magnitude 
of a,g(p,-p,)/p,, U 2 / H  and vl U /H2 ,  respectively, with all forces referred to the unit 
mass of the liquid. Defining a sedimentation Grashof number G and a sedimentation 
Reynolds number R by 

= H~ga,(p,-p,)/p,v;, € 2  = HU/V,, (3) 

we conclude that neglecting the viscosity of the suspension and inertial effects is 
justified if G / R +  co, G/R2+ 00. (4) 
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Both G / R  and G/R2 are usually very large in applications of batch sedimentation. 
It follows that the momentum equation of the mixture is reduced to 

vp = a(p,/p, - 1) e,  ( 5 )  

where e is the unit vector in the direction of gravity. Equation ( 5 )  indicates that the 
pressure is, in this approximation, equal to the hydrostatic pressure in the mixture. 
Furthermore, by the same reasoning as in the one-dimensional theory (Wallis 1969, 
p. 91), the momentum equation of the relative motion is reduced to a functional 
relation between the drift flux j,, and the concentration a. With the drift flux defined by 

j,, = L - 4  (6) 

j,, = f(4 e. (7) 

the functional relation is written formally as 

Equation ( 7 )  indicates that the drift-flux vector is parallel to the vector of the terminal 
settling velocity of a single particle in the quiescent fluid. The function f ( a )  is to be 
determined from suspension mechanics or by experiments. Often an empirical cor- 
relation of the power-law form 

f ( a )  = a(1 -a)lz (n = const) (8) 

is used. According to Richardson & Zaki (1954), cf. also Wallis (1969, p. 178), the value 
n = 4.65 providesgood results for small particle Reynoldsnumbers and very small ratios 
of particle diameter and vessel width. For larger particle Reynolds numbers smaller 
values of n are appropriate. The correlation is terminated a t  a certain value a, which 
is the particle concentration in the sediment (packed bed). For hard spheres a, is 
known to be about 0.6. 

Applying the curl operator to ( 5 ) ,  we obtain 

V a x e  = 0. (9) 

Thus the concentration gradient must either vanish or be parallel to the gravity 
vector, i.e. the particle concentration in the suspension is constant in m y  horizontal 
plane a t  any instant of time. 

We now introduce a space co-ordinate z in the direction of g. The co-ordinate 
surfaces z = const are horizontal planes. The other two space co-ordinates can be 
chosen a t  our convenience. It then follows from (9) that 

a = a(2, t ) .  (10) 

The particle continuity equation ( 1 )  can now be essentially simplified. Introducing the 
drift-flux relation by means of (6) and (7) and satisfying the continuity equation (2) of 
the mixture, we obtain 

(11)  -++j+ef'(a)].Va = 0, 

where f ' ( a )  = d f /da .  Since e is in the direction of z and a = a(z, t ) ,  ( 1  1 )  can be rewritten 
as 

aa 
at 

aa aa 
- + rj, + f  '(all = 0,  at 
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where j, is the z-component of the total volume-flux vector j. Equation (12) is of the 
same form as in the one-dimensional flow with constant cross-section. It describes the 
propagation of kinematic waves with the wave velocity 

w =j,+f’(a). (13) 

In  the one-dimensional flow in a vessel with vertical walls and constant cross-section, 
the total volume fluxj is constant. The constant is zero if there is a fixed bottom, which 
is usually the case with batch sedimentation. In  a vessel with inclined walls, however, 
the flow is two-dimensional or three-dimensional, and j is to be determined from the 
continuity equation (2), supplemented by appropriate boundary conditions and the 
auxiliary condition (10). Thus the kinematic waves, which propagate in a quasi-one- 
dimensional manner, are imbedded in a two-dimensional or three-dimensional total 
flow field which, in turn, depends on the waves via the boundary conditions (cf. $4). 

Differentiating the kinematic-wave equation (12) with respect to any co-ordinate x 
orthogonal to the z-axis and taking into account that, according to (lo), a does not 
depend on x, we obtain aj, aa 

ax a2 
--- - 0. 

This condition is satisfied if aj,/ax = 0 or if aa/az = 0. In  the latter case it follows from 
(12) that a = const, and (12) is satisfied trivially. The former case, however, yields 

This is an auxiliary condition which has to be obeyed when seeking for solutions of 
the continuity equation (2). The special case a = E = const seems to be an exception. 
In  this case, however, a solution that is stable with respect to small perturbations of 
the constant concentration is being sought. Thus, if a = E+ea‘(z, t)  with s+O it is 
required that j ,  = j’,+ej;. Taking into account that Z / a z  = 0 but aa’ /az 4 0 we 
obtain from (14) aj,/az = 0. Therefore, the condition (15) is also applied to the case of 
constant concentration. 

For steady flow, e.g. for a continuous thickening process, (12) yields a = const 
unlessj, = - f ’ (a)  or a discontinuity appears. We shall not, however, proceed further 
with steady-flow problems in this paper. 

For unsteady flow, the wave fronts [ ( t ,  x )  = const are introduced. The co-ordinates 
( t ,  z, .. .) are replaced by the new independent variables (7, g ,  .. .) with 

az 
t = 7) - =j,+f’(a). a7 

This transforms the kinematic-wave equation (12) into aa/i% = 0,  with the general 
solution a = a(<). 

Thus, as in one-dimensional flow with constant cross-section, the particle concen- 
tration remains constant on wave fronts. The function a(5) is to be determined from 
initial conditions together with boundary conditions and - perhaps - jump conditions 
a t  discontinuities (kinematic shocks). 

It might be tempting to conclude from (17 )  that in the case of a constant initial 
concentration the concentration in the suspension remains constant a t  all times. 
Although, in fact, this may happen under certain circumstances (cf. the examples in 
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$ 9  5.1 and 5.4) the conclusion is not true in general. For the initial conditions may be 
such that centred kinematic waves appear which give rise to a continuous variation of 
the particle concentration in the suspension (cf. the examples in 555.2 and 5.3). 

3. Kinematic-shock relations 
Discontinuities in the concentration a propagate as kinematic-shock waves. Such 

discontinuities separate the suspension from the clear fluid on top and from the 
sediment a t  the bottom of the vessel, and under certain conditions they may also 
appear within the suspension. 

We shall denote quantities immediately behind the kinematic shock wave by A ,  

while quantities without the circumflex refer to the state immediately in front of the 
shock. In  the shock the particle volume fraction jumps from a t o  2. Since inertial 
terms, i.e. convective momentum flux, and friction are neglected, the conservation of 
momentum flux across the shock implies that the pressure has to  be the same on both 
sides of the shock. Thus = p in any point of the shock surface. If t is a vector within 
the tangential plane in any point of the shock surface, it follows that the inner deriva- 
tive of the pressure t . V p  has to be the same on both sides of the surface. Substituting 
according to (5) and taking into account the fact that a is different on both sides of the 
discontinuity, we obtain t . e  = 0. This shows that the kinematic shock surface is 
horizontal provided that (5) is satisfied on both sides of the shock. This is not neces- 
sarily the case in the sediment layer in which the particles support each other. 

The propagation velocity W of the kinematic-shock waves can be determined in the 
same manner as in the well-known one-dimensional case (cf. Wallis 1969, p. 134). For a 
(possibly inclined) shock that separater, the suspension with concentration a from the 
sediment, which is a t  rest and has the concentration a,, conservation of the volume of 
the solid phase yields 

(18) &,-a 

For a horizontal kinematic shock the normal component of the total volume flux is 

w =  -- f ( a )  ( e .  n), 

where n is the unit normal vector of the shock surface (i.e. sediment surface). 

conserved if c 
32 =j*,  

and from the conservation of particulate volume one obtains 

A horizontal shock remains horizontal only if W = W(z,  t ) .  Together with (10) this 
again yields (15). 

4. Boundary conditions at walls 
An ordinary boundary condition would require that the flow of both the liquid 

phase and the solid phase (particle cloud) be tangential a t  a wall. At downward-facing 
inclined walls, however, that condition cannot be satisfied within the framework of 
the kinematic model, since, according to (71, the drift flux is always in the vertical 
direction. This is also the reason why our basic equation (12) is of the same form as if 
the cross-section were constant. It therefore contradicts the continuity equation of 
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one-dimensional flow with variable cross-section A .  The conclusion is that the theory 
of kinematic waves fails near downward-facing inclined walls. Owing to the vertical 
drift flux, there is a thin layer of clear liquid a t  the downward-facing inclined wall. This 
has already been observed in all relevant experimental investigations (see e.g. Hill 
et al. 1977; Acrivos & Herbolzheimer 1979). The volume flux in the boundary layer 
has to compensate for the deficiency of (12), which is a simplified continuity equation 
for the particle phase. Thus the velocity in the boundary layer is much larger than in 
the bulk of the suspension. Inertial effects and/or viscosity can no longer be ignored 
in this layer but are essential for balancing the buoyancy forces, which are due to the 
difference between the particle concentration in the boundary layer and that in the 
bulk of the suspension. 

The thickness 6 of, and the tangential velocity uin, the boundary layer can be easily 
estimated. Since 6 is referred to H ,  and u is referred to U ,  continuity of volume flux 
requires 6u to be of order unity. Furthermore, the inertial terms (which have been 
neglected so far in the momentum equations) are of the same order of magnitude as the 
buoyancy term (which has been retained) if u2 is as large as G/R2;  cf. (3)-(5). Similarly, 
the viscous terms are of the order of the buoyancy term if u3 is as large as G I R .  Thus 
inertial effects and viscosity are both of importance in the boundary layer if GiR-1 
and G*R--* are of the same order of magnitude, i.e. if GIR4 = O( 1) .  Viscosity dominates 
the flow in the boundary layer of clear liquid if GIR4+ 00. It is this case that has been 
investigated in detail by Acrivos & Herbolzheimer (1979). On the other hand, if 
G/R4-+0 viscous effects are either small or confined to very thin sublayers of the 
boundary layer, which is mainly inviscid and occupies a thickness 6 = O(G-tR).  The 
latter case will be studied in what follows. Note that GIR4+ 0 together with GIR2+ co 
implies R --f co. 

There are no unbalanced buoyancy forces in the suspension as long as (10)  is satisfied. 
As, furthermore, viscous shear stresses are negligibly small in the boundary layer, the 
entrainment of suspended particles into the boundary-layer flow of clear liquid is 
negligibly small, too. (For a more detailed analysis see the appendix.) On the other 
hand, the boundary layer can be maintained particle-free only if the normal com- 
ponent of the particle volume flux in the suspension j z n  vanishes a t  the wall. With 
(6) and (7)  we immediately obtain the boundary condition 

ol., + f (a) cos 8 = 0 a t  the wall, (21 )  

wherej, is the normal component of the total volume flux j and 8 is the angle between 
the (vertical) z-axis and the wall normal pointing into the suspension (figure 1). Since 
0 < 6 < +n it follows from (21) < 0, i.e. the total volume flux in the suspeiision 
is always towards the wall. 

5. Examples: batch sedimentation in vessels with inclined plane 
or conical walls 

We shall now study simple examples of two-dimensional or axisymmetric flow. For 
a two-dimensional flow in a Cartesian (x, 2)-plane the vessel consists of a horizontal 
bottom, two plane side walls with inclination angle 8, either roof-like (inclined toward 
each other, figure 2a) or parallel to each other (figure 2 b ) ,  and two vertical side walls 
parallel to the (z, 2)-plane. In  the axisymmetric case the vessel is a truncated, circular 
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FIGURE 1. Boundary condition at downward-facing inclined wall. 

cone with vertical axis and horizontal bottom (figure 2 a ) .  I n  this case x is the radial 
co-ordinate. The top surface is always supposed to be horizontal and may either be a 
solid wall or a free surface of the fluid. The reference length H for the dimensionless 
variables is defined as shown in figures 2 (a, b ) .  

The present theory applies only if the boundary-layer thickness 6 is much smaller 
than the width of the vessel, i.e. S/h cot B = o( 1) and &/a sin B = o( l), respectively. 
With the orders of magnitude given in $4 the conditions are respectively 

l/hcot B = o(GiR-') and llasin 8 = o(G4R-I). 

Very narrow vessels (widths comparable to the boundary-layer thickness) have 
recently been studied by Herbolzheimer & Acrivos (1981). 

The continuity equation (2) of the mixture can be rewritten as 

1 a(xuj,) aj -- +-, = 0, 
xu ax ax 

where cr = 0 for two-dimensional flow, cr = 1 for axisymmetric flow, and j,, j ,  are the 
x-, z-components of the total volume-flux density j. Taking (15) into account, ( 2 2 )  
can be integrated a t  once to yield 

( 2 3 )  

with an arbitrary function C(z,  t ) .  In  case of roof-shaped or conical walls, symmetry 

( 2 4 a )  
with respect to x = 0 requires 

For parallel walls, however, C(x, t )  is to be determined from the boundary condition a t  
the upward-facing inclined wall. It states that the normal flux component 

j ,  = j ,  COS B -j, sin B 

vanishes at the surface of the sediment layer with height s, i.e. a t  (x +a) tan B = z + s. 
This yields 

jz= --- aj,+ C(Z, t )  cot B, 
1+Craz 

C(z , t )  ZE 0. 

( 2 4 b )  
a j  C(z, t )  = j,+ (z+s-a')  2, aZ 

where a' = atanB. 
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0 

H =  1 

t- a - 

FIGURE 2. Batch sedimentation in vessels with inclined plane or conical walls: 
(a )  roof-shaped plane walls or conical wall; ( b )  parallel plane walls. 

At the downward-facing inclined wall x = z cot 6 the normal flux component 
j ,  = j ,  cos 13 -j, sin 8 has to satisfy the boundary condition (21). Substituting for j ,  
according to (23), we obtain 

- 2 aj " + j ,  = --+C(z,t). f (a) 
i + g a z  a 
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FIGURE 3. Types of sedimentation depending on the initial concentration no. Drift-flux 
relation according to ( 8 ) ,  n = 4.6; a, = 0.64, a, = 0.502, czi = 0.357, a, = 0.151. 

Equation (25) and the kinematic-wave equation (12) comprise a system of two first- 
order partial differential equations for the two unknowns a(z, t )  and j , (z,  t ) .  The 
coupling of the equations is due to the boundary-layer flow a t  the inclined walls, and 
has no counterpart in the well-known one-dimensional theory of vessels with vertical 
walls. 

An interesting consequence of (25) and (23) is that an initial condition for the total 
flux j cannot be prescribed independently of the initial particle concentration do. 

Rather j ,  at initial time t = 0 is to be determined by integrating (25) with a = ao, 
andj, a t  t = 0 follows from (23). The reason for this peculiar restriction is in the failure 
of the kinematic-wave theory to describe properly the starting-up process, which is 
controlled by dynamic effects. 

Depending on the initial concentration a,, three different types of sedimentation 
come into operation (figure 3). The concentrations cti, at and a, that separate the 
various sedimentation types from each other are respectively the concentrations a t  
the inflection point of the drift-flux curve, a t  the point where a straight line through 
the sediment point as is tangent to the drift-flux curve, and a t  the point where the 
tangent crosses the curve. Thus ai, a, and a, are to be determined from 

fff(ai) z= 0, f(a,)/(a,-as) =f(at) / (at-as)  =f’fat)* (26) 

The classification is exactly the same as in the well-known one-dimensional theory of 
a vessel with vertical walls (cf. Wallis 1969, pp. 191-194). For this classification is 



Kinematic-wave theory of sedimentation 333 

based on the relative magnitude of the kinematic-wave velocities and kinematic- 
shock velocities, and is independent of the total flux j. 

5.1. Roof-shaped and conical walls, sedimentation type I 
(ao < a, or a, 2 a,) 

A kinematic shock separating the suspension with initial concentration a. from the 
sediment with concentration a, is possible. This shock moves, according to (20), with 
the constant dimensionless velocity W = -f(a,)/(a,-a,). Since a t  t = 0 the sedi- 
mentation process starts with no sediment at  the bottom ( z  = 1) we obtain the 
following position of the shock separating the sediment from the suspension : 

In  the suspension the concentration remains constant and equal to a,. Thus the 
kinematic-wave equation (12) is trivially satisfied in this case, and from integrating 
(25) with C(z,  t )  = 0 we obtain 

Here, a function of integration has already been determined such that j ,  = 0 a t  
z = zs ( t ) ,  i.e. a t  the sediment, which is a t  rest. 

As x+  0 the flux density j ,  increases beyond bounds. Thus inertial effects can no 
longer be ignored and one of the basic assumptions of kinematic wave theory is 
violated a t  and near the tip of the vessel. 

Equation (28)) which is valid in the suspension, shows thatj,  is positive, i.e. directed 
downwards. This results in an enhanced velocity of the kinematic shock separating 
the suspension from the clear liquid on top. With W = dzo/dt a differential equation 
of the shock position x = zo(t) is obtained from the kinematic-shock relation (20). 
Substituting according to (28) and integrating, we obtain 

By a suitable choice of a constant of integration, (29) has been made to satisfy the 
initial condition z, = h a t  t = 0 (cf. figure 2a) .  According to (29) the path of the 
kinematic shock separating the suspension from the clear fluid is a quadratic (two- 
dimensional case, v = 0) or cubic (axisymmetric case, v = 1)  parabola in the ( z , t ) -  
plane (figure 4). 

The settling process is terminated after a certain time t,. It can be determined either 
from the intersection of the upper and lower shock paths (figure 4), or from equalizing 
the total volume of the solid phase both in the sediment and in the initial suspension. 

The limiting case of a very dilute suspension, i.e. a,-+ 0, is of particular interest. With 
f(a,)+a, as a,+ 0, cf. ( 8 ) ,  it follows from (30a)  that the sedimentation time is 

1 
t - - (1 -h2+") 
S - 2 + a  

as ao+ 0. 
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Q!=0 
(Clear liquid) 

0 0.2 0.4 0.6 

1 

FIGURE 4. Type I sedimentation in a vessel with roof-shaped plane ((T = 0) or conical ( B  = 1) 
walls; h = 0.5, n = 4.6, a. = 0.106, a, = 0.64. 

This is the same result as obtained from the PNK theory (Ponder 1925; Nakamura & 
Kuroda 1937), which, however, does not give any details of the flow field. If the con- 
vective flow were neglected the sedimentation time in the limiting case a. -+ 0 would 
simply be that of a single particle in a fluid a t  rest, i.e. t ,  = 1 - h. This is as much as 
three times larger than that given by ( 3 0 b ) .  

Experiments with very dilute suspensions in conical vessels were performed by 
Hill et al. (1977). Since the sedimentation Reynolds number was not very large and, 
besides, the vessels were filled to the tip, where kinematic-wave theory does not apply 
(cf. (28)), the experiments of Hill et al. (1977) cannot be compared with the present 
theory . 

Let us now return to the more general case of finite particle concentration. Since 
a = a,, = const it is easy to determine the instantaneous streamlines $(z,x) = const 
of both the liquid (subscript 1) and the solid phase (particle cloud, subscript 2). The 
stream functions and $2 are defined by 

Now j, with componentsj,,, j2, is related to a and j with componentsj,, j ,  according to 
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FIGURE 5. Instantaneous streamlines of liquid (- - - -) and solid ( . . . . . . ) phases at initial time 
t = 0 (particle streamlines and particle paths are identical). Vessel: truncated cone; h = 0.5, 
n = 4.6. Initial concentration (ao = 0.106) of type I (no centred wave). 

X 

(6) and (7) ,  and j,followsfrom j, = j -j2. Using the results ( 2 8 )  and (23)  andintegrating 
(31), we obtain 

Thus the instantaneous streamlines of the solid phase are straight lines x = Kz, with 
K depending on the parameter t since z, = z,(t). Therefore the particle paths, too, are 
straight lines originating from the intersection of the inclined walls (i.e. the cone tip 
in the axisymmetric case). The liquid streamlines in the suspension region are bent 
towards the inclined walls and, in contrast to the case of vertical walls, are directed 
downwards (figure 5 ) .  

5.2. Roof-shaped and conical walls, sedi~enta€ion type II (ai < a,, < at) 

A kinematic shock between a. and a, is not possible since it would move with lower 
speed than the kinematic waves in front of it. Thus there is a kinematic shock with a 
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FIGURE 6. Type I1 sedimentation in a truncated cone; 
h = 0.5, n = 4.6, a,, = 0.45, a, = 0.502, a, = 0.64. 

concentration jump from at to a,, but the increase in concentration from a, to a,  is 
continuous and can be described by centred kinematic waves (figure 6 ) .  

I n  order to determine the centred waves it is convenient to  introduce the wave 
variable 5 as a new independent variable defined by (lBa, b). By this transformation 
(25) with C(x, t )  = 0 becomes 

Equations ( 3 3 )  and (1Gb) are a system of two equations for the two unknownsj,(g, 7) 

and z ( [ , T ) .  According to  (17)  a = a(C), with a(-) to  be determined from initial and 
boundary conditions. Since in a centred wave all waves have their origin in the same 
point, a(-) can be chosen arbitrarily in this region. The simplest choice is the linear 
relation 

a = at--, (34) 

which satisfies the boundary conditions a = at at  the shock front 5 = 0, and a = a, a t  
the wave y = at - a0 separating the centred-wave region from the region of constant 
concentration. Further boundary and initial conditions are 

j ,  = 0 (C = 0, 7 > O ) ,  ( 3 5 a )  

z = 1  (7=0, O < [ < a t - a 0 ) .  ( 3 5 b )  

Equation ( 3 5 a )  is due to the fact that the total volume flux is continuous across the 
kinematic shock with the sediment behind it being a t  rest. Equation ( 3 5 b )  indicates 
that the wave centre is a t  the bottom. 
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The system of equations (33 )  and ( 1 6 b )  is in the form of compatibility conditions, 
and may be solved by a method of characteristics. Solutions in closed form can be 
obtained by the method of strained co-ordinates based on the assumption that 
at - ai is very small compared to unity. This is quite well satisfied by the usual driR- 
flux correlations (cf. figure 3 ) .  Thus we expand in terms of 5 as follows: 

2 = 2 , ( 7 ) + ~ 2 * ( 7 ) +  ..., ( 3 6 a )  

j ,  = Cj37)+  .... (36b)  

I n  (36b)  the first-order term has been omitted in order to satisfy the boundary 
condition ( 3 5 a ) .  Introducing the expansions (36a ,  b )  into (16b)  and (33 )  and solving 
the perturbation equations subject to the boundary condition (35b) ,  we finally obtain 
(with 7 = t )  

2, = 1 + f t ,  ( 37 )  

m + l  
m 

j: = - f "(a,) ( 1  - 2;s) 

jz = -fN(at)1nz, (m = 0) ,  (39b)  

This is the solution in the centred-wave region. Unlike the one-dimensional flow in 
vessels with vertical walls, the wave fronts are not straight lines any more. Note that 
f "(a,) is of order at - ai, since f "(ai) = 0. Thus in the centred-wave region, the total 
flux j ,  is of order (at - ai)2. 

For the region of constant concentration, which is above the centred-wave region, 
we have to solve (25 )  with a = ao. It is required that the solution be continuous a t  the 
limiting wave front 5 = at - ao. Thus the boundary condition is 

j ,  = (at - ao)j,*(t) a t  z = z,(t)  + (at - ao) z*( t ) .  (41 )  

The solution in the region a = a. is 

with z, according to ( 3 7 ) ,  and 

The solution for m = 0 can be obtained from ( 4 2 )  by applying the limit process m-t 0. 
I n  a first approximation, with terms of order (at - ai)2 being neglected, the solution 

(42 )  agrees formally with the solution (28) describing sedimentation of type I. Only 
the function z s ( t )  is somewhat different in both cases (cf. (27 )  and ( 3 7 ) ) .  Therefore the 
position zo(t)  of the kinematic shock separating the suspension from the clear liquid on 
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FIGURE 7. Type I11 sedimentation in a truncated cone; h = 0.5, n = 4.6, 
U, = 0.217, Z = 0.45, ut = 0.502, 01, = 0.64. 

top also corresponds-in a first approximation-to that of type I, (29). The 
result is 

where the neglected terms are of order (at - a#. 

in the initial suspension we obtain the sedimentation time 
Finally, by comparing the total volume of the solid phase in the sediment with that 

This result is analogous to (30a). 

5.3. Roof-shaped and conical walls, sedimentation type III 

A continuous connection between the centred wave and the region of constant initial 
concentration is not possible. Rather there is a third kinematic shock which separates 
the two continuous regions of the suspension (figure 7 ) .  The concentration E immedi- 
ately behind this shock is determined solely by the drift-flux relation. It is given by the 
point where a straight line through the point of the initial state (a  = a,) is tangent to 
the drift-flux curve (figure 3). Thus the shock speed is the same as the wave velocity 
immediately behind the shock, and the shock path CA in the (z,t)-plane (figure 7 )  
coincides with the limiting wave front (a  = a) of the centred waves. The centred waves 
can be determined from the equations derived in the $5.2, i.e. (34) and (36)-(40). 

(a, < 010 < ai) 
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Furthermore, the shock path CB is a straight line, and is again given by (37). With 
respect to the sedimentation time this implies that (45) also applies to type 111. 

On the same arguments as for type 11, the total flux j, is small and of higher order 
in the centred-wave region, while in the constant-concentration region it is, to a first 
approximation, given by ( 2 8 )  with x s ( t )  evaluated according to (37). It follows that 
the liquid-suspension interface is again given approximately by (44) until, a t  a 
point A (figure 7) ,  i t  meets the kinematic shock that is the upper boundary of the 
centred-wave region. For larger times (t > ta)  the interface is influenced by the 
centred waves. Withj, negligible in this region, and a approximated by at, (20) yields 
the kinematic-shock velocity W = f(a,)/a, + . . . . This is a constant, and section AB 
of the interface is approximately a straight line (figure 7).  

5.4. Parallel plane walls, sedimentation type I (a, < a, or a, 2 a,) 
At the upward-facing inclined wall sediment can accumulate. We assume that the 
sediment remains a t  rest, which requires sufficiently small inclination angles, de- 
pending on particle shape and material. The assumption is superfluous for very small 
initial concentrations a, < 1, since in this case the thickness of the sediment layer is 
negligible. 

As a kinematic shock between the suspension with initial concentration a, and the 
sediment with concentration a, is possible if the value of a, is in the regime of type I, 
the concentration remains constant in the suspension.? It then follows from the 
kinematic-shock relation (18) that the rate of increase of the sediment height s 
(measured in the vertical direction, cf. figure 2 b )  due to particle settling is 

f(a,)/(a, - a,) = const. 

Note that the rate of increase is independent of the inclination angle 8. It is therefore 
the same above the horizontal bottom and above the upward-facing inclined wall. 
Since no particles can settle from the clear liquid, the sediment height s does not 
increase with time any more above the liquid-suspension interface, i.e. for x c z,(t), 
where zo(t) is still to be determined. Hence the sediment height becomes 

s = At (x’ 2 ~ , ( t )  +At), (46a) 

s = AT(x’)  (x’ 5 zo( t )  +At) ,  (46b)  

with A =f(a,)/(as-ao), (47) 

x’ = (x + a )  tan 8, 
and 7(x’) to be determined from 

x’ = zo(7) +A7. 

(48) 

(49) 

Since a = a, = const, the total volume flux in the suspension can easily be obtained 
by integrating (25) with C(z,  t )  substituted according to (24b) .  A function of integration 
is determined from the condition that the vertical flux component j ,  has to vanish a t  
the horizontal suspension-sediment interface above the bottom, i.e. at 

z =  1-s= 1-At .  

I n  the presence of an upward-facing inclined wall the rather large initial concentrations in 
the regimes I1 and I11 seem to give rise to some additional problems that are beyond the scopo 
of the present analysis. 
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This yields f (ao)  1 -2 -A t  
a, a’-At ’ 

j, = - 

where, as before, a’ = a t a n 8  has been introduced. Furthermore, from (23 )  the 
horizontal flux component 

(51 )  
j =o f ( a  ) 1 +x‘ - 2(2 + At) 

a, (a’ - A t )  tan 8 
is obtained. 

The position of the liquid-suspension interface z = x, ( t )  can now be determined 
from the kinematic-shock relation (20) with IV = dz,/dt. Performing the integration 

The settling process is terminated a t  time t = t ,  when the liquid-suspension interface 
meets the horizontal part of the suspension-sediment interface. Hence t, is given by 
the relation zo(ts) + At, = 1. 

Finally the streamfunctions $1 and $2, describing fluid streamlines $l = const and 
particle streamlines $z = const, respectively, can be found in the same manner as in 
5 5.1.  The result is 

a’-At  ’ 1 (1 - 2  - 2 A t ) z  
(53)  

where, for $1, n = (1 - ao)/a, and the upper sign is taken, whereas, for $2, n = 1 and 
the lower sign is taken. 

The results became rather simple for very dilute suspensions, i.e. a, < 1. Since 
f(a,)-+a, as a,+O we obtain from (50) - (53)  the following limiting results as a,-+O: 

(54 )  

zo = (i+a’)(l--e-t /a’) ,  (55 )  

(56)  

$,atan28 = ( 1 - z ) ( x ’ - - z ) ,  ( 5 7 4  

(57b)  

j ,  = (1 - z ) /a ’ ,  j ,  tan 8 = ( 1  - 22 + x’)/a’, 

t ,  = a’ln (1 + l / a ’ ) ,  

($2/ao) a tan28 = x’(1 +a’ - 2 )  - ( 1  - z )  z .  

Equations ( 5 5 )  and ( 5 6 )  are in agreement with the results of Ponder (1925) and Naka- 
mura & Kuroda (1937).  According to ( 5 4 )  and ( 5 7 a ,  b )  the velocities and streamlines 
within the suspension region are independent of time (but, of course, the boundaries 
of this region move with time). Thus particle streamlines and particle paths are 
identical in the limiting case a,-+ 0. Note, furthermore, that  in the reduced co-ordinate 
system (x’, x )  (with x’ = (x + a )  tan 8)  the streamlines do not depend separately on the 
two geometrical parameters a and 8, but only on the combined parameter a‘ = a tan 8. 
A typical example is shown in figure 8. 

Retaining only first-order quantities in terms of the small initial concentration a, 
also simplifies (46) - (49) ,  which give the height of the sediment layer. The height 
distribution after termination of the settling process may be of particular interest. 
With t = t ,  according to (56 ) ,  we obtain from ( 4 6 a )  for the sediment-layer height 
above the horizontal bottom 

a, ’ 1+u’ s = - a  In- 
a s  a’ ’ 
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FIGURE 8. Streamlines (paths) of liquid (- - - -) and particles ( . . . . . . ) in a vessel with parallel, 
inclined plane walls. Very dilute initial suspension (ao .+ 0) ; a' = a tan 8 = 4; 2' = (z +a)  tan 6, 
$; = $la tan2 8, ~i = ($,/a,) a tan2 6. 

and from (46b) for the sediment-layer height above the inclined wall 

a0 , l+a' 
a, 1+a'-x' 

s = -a In (x' 5 1).  

This work was supported by the Fonds zur Forderung der wissenschaftlichen 
Forschung, Projekt Nr. 4078. The author is grateful to Professor Batchelor and to the 
referees for valuable comments and suggestions. 

Appendix : The flow in the boundary layer at a downward-facing 
inclined wall 

For simplicity only two-dimensional and axisymmetric flows are considered in what 
follows. Boundary-layer co-ordinates ( 5 , ~ )  are used, and the 5- and ycomponents of 
the total volume flux j are denoted respectively by u and (figure 9). Note that in the 
clear liquid (a  = 0) u and v are identical with the velocity components. 

The inviscid part of the boundary layer 

The following stretched variables are defined: 

(A 1)  I .iz = G - ~ R u ,  v" = V ,  

= [, 17/ = GlR-17, 8 = GtR-18. 

The equation of the interface between the suspension and the clear liquid is 17/ = 8([, t ) .  
Considering the limit G/R2  + co and G/R4+ 0, the equation of motion of the liquid 

in the direction normal to the wall reduces to aP/aij = 0. Thus the pressure in the 
particle-free layer is equal to  that in the suspension and given by (5). As a = 0 in the 
particle-free layer, the equation of motion in the tangential direction becomes 
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FIGURE 9. Boundary layer at downward-facing inclined wall. 

This equation shows that, in a first approximation, the flow in the boundary layer of 
clear liquid is inviscid and quasi-steady. The concentration a(z, t )  in the suspension is 
to be determined by solving the kinematic-wave problem formulated in $5  2-4. 

The continuity equation can be written as 

where an integer a is used to distinguish the two-dimensional case (a = 0) from the 
axisymmetric case (a = I ) ,  and x is the distance of a point a t  the wall from the axis of 
symmetry (figure 9). The appropriate boundary conditions are 

E = O  a t  q = O ,  (A 4a) 

V" =jn a t  q = s"(<,t), (A 4b) 

.ii = 0 a t  q = s"(E,t). (A 4c) 

Equation (A 4b) expresses the continuity of the total flux a t  the suspension-liquid 
interface. Withj, given by (21) i t  is guaranteed that no particles flow through the 
interface (j,, = 0). Equation (A 4c) is a consequence of the conservation of tangential 
momentum flux through the interface, together with the fact that  the tangential 
velocity in the suspension is an order of magnitude smaller than in the particle-free 
boundary layer. 

The continuity equation (A 3) can be satisfied by introducing a streamfunction $ 
as follows: 

I 
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Substituting into the momentum equation (A 2) yields 

where partial derivatives with respect to c and i j  are denoted by subscripts 
respectively. The boundary conditions in terms of $ read 

and 71" 

$ = O  a t  I = O ;  (A 7 4  

$? = o a t  = S"(g,t). (A 7c) 

Of course, the inviscid boundary-layer flow can neither satisfy the condition of zero 
velocity a t  the wall nor will the shear stress be continuous a t  the suspension-liquid 
interface. Hence a viscous sublayer at  the wall and a free shear layer a t  the interface 
have to be introduced. Both layers are very thin in comparison with the inviscid part 
of the boundary layer. 

The viscous sublayer at the wall 

The convective, buoyancy and viscous terms become of equal importance if the 
variables are stretched as follows: 

Thus the ratio of the sublayer thickness to the total boundary-layer thickness is as 
small as G ~ R - ?  

Written in the sublayer variables defined by (A 8)) the momentum equation becomes 

The continuity equation (A 3) remains unchanged, i.e. the tilde is to be replaced by 
the subscript s. The boundary and matching conditions are 

us = v, = 0 a t  T~ = 0,  (A 10a) 

lim us = lim4. 
78-W ii+O 

(A lob)  

Obviously the problem defined for the sublayer is of the type of a classical viscous 
boundary layer. 

The free shear layer at the in.terface 

Since the normal velocity v is equal to j,([) on both sides of the suspension-liquid 
interface, v will be only weakly disturbed in the free shear layer. As j, = O( l ) ,  the 
viscous term R-L82u/i3y2 can balance the convective term vau/ay only if the layer 
thickness is as small as R-1. (This is much smaller than the thickness of the viscous 
sublayer at  the wall.) As far as the order of magnitude of the tangential velocity in the 
free shear layer is concerned we have to  make sure that matching can be accomplished 
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with u = O( 1 )  in the bulk of the suspension and with &/a7 = O(G/R2) in the particle- 
free boundary layer. This requires the following stretched variables : 

[F = '!, TF = R ( V - 6 ) ?  (A 11) 

u, = u, v, = R [ v - j , ( [ ) ]  if G/R3 = O(1) or G/R3+0,  (A 12a) 

uF = (R3/G)u, wF = (R4/G) [v-j,([)] if G/R3+co. (A 12b) 

As before, j,(t) is given by (21). In  the case G/R3 = O(1) or G/R3-+ 0 the tangential 
velocity in the free shear layer is of the order of unity, i.e. of the same order of magnitude 
as the drift flux. This requires taking the relative motion into account in the momentum 
equation, but it cannot be done rigorously by applying the relation (7)  since the drift- 
flux model is based on neglecting inertial terms in the momentum equation (cf. Wallis 
1969, pp. 91 and 123). We shall therefore consider the case G/R3-+co in which the 
drift flux is negligible in the tangential motion of the mixture. Since there is no 
influence of the free shear layer on the leading approximation of the flow outside of it, 
the condition GIR3-t co applies to the free shear layer only. 

It then follows, from the continuity equation (1 1)  for the particles, that aa/8VF = 0. 
This yields 

i.e. the result that the particle concentration in the suspension does not vary in 
horizontal direction remains true even in the free shear layer. 

The equation of continuity of the mixture, (A 3), is again reproduced with tilde 
replaced by the subscript P. Taking (A 13) into account, the tangential momentum 

where va is the kinematic viscosity of the suspension with particle concentration a. 
It is related to the dynamic viscosity pa of the suspension by v, = ,ua/pa with 

P a  = (1 -")PI + ~ 2 .  

The matching conditions are 
. auF "sine 

hm -=-, 
?IF-+- 00 aTF "0 jrt 

(A 15a) 

lirn uF = 0. (A 15 b )  

The right-hand side of (A 15a) is the value of &i/8ij a t  i j  = 8, as obtained from the 
inviscid momentum equation (A 2) together with the boundary conditions (A 4b ,  c). 

At the interface between the suspension and the clear liquid it is required that the 
total volume flux and the shear stress be continuous. This yields the boundary condi- 

?IF++ 

tions 

lim uF = lirn uF, 

lim vF = lim vF = 0. 

?IF-0 - vF-0 + 

OF-0 - TF+O + 
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FIGURE 10. Streamlines ~ ( &  q )  = const in the particle-free boundary layer at a plane 
inclined wall; B, = 2f(ao)/ao tan 8, B, = 2B: sin 8. 

The solution of (A 14) subject to the auxiliary conditions (A 15a)b)  and (A 16) is 
found to be 

- 

(A 17)  

(7F < O ) ,  

p,asin0 
UF = - exp (%TI?) (7F ’ O ) .  

Pa%.% 

As was t o  be expected, (A 17) shows that uF > 0, i.e. the motion in the free shear 
layer is directed upwards. 

Example 
For a plane wall (cr = 0) and a sedimentation process of type I (01 = cto = const), the 
equations of the inviscid boundary-layer flow of clear liquid, i.e. (A 6) and (A 7a-c),  
possess the similarity solution 

= 

(A 18) 

- @. - (2 sin 8)4 f (ao)  s =  
tan0 a. 
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Note that the origin of the boundary-layer co-ordinates is a t  the intersection of the 
sediment surface and the wall (figure 9). 

Representative streamlines are shown in figure 10. The variables are stretched such 
that the streamline pattern is independent of both the inclination angle 8 and the 
initial concentration a". 

It follows from (A 5 )  and (A 18) that both the tangential and normal velocity 
components are linearly distributed across the boundary layer, with 

As the tangential velocity of the inviscid flow a t  the wall is proportional to Et, the 
viscous-sublayer flow is analogous to the classical boundary-layer flow a t  a wedge 
with 60" angle of attack. The Falkner-Skan equation, however, is to be modified 
slightly owing to the buoyancy term on the right-hand side of (A 9). 
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